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J .  Phys.: Condens. Matter 1 (1989) 713-724. Printed in the UK 

Magnetoresistance of potassium films in the Sondheimer 
geometry 

V V Gridin, W R Datars and Y B Ning 
Department of Physics, McMaster University, Hamilton, Ontario, Canada L8S 4M1 

Received 16 August 1988 

Abstract. We report a study of transverse magnetoresistance of thin, rolled potassium films. 
The measurements in the Sondheimer geometry, when the magnetic field is along the 
outwards normal to the plane of the film, yield no oscillatory pattern in the transverse 
magnetoresistance as a function of increasing field. For the high-field regime, with wt = 
10-30, there is a non-saturating linear increase in the magnetoresistance. The Kohler slope 
of this increase is dependent on the ratio of the film thickness to the electronic mean free 
path and is up to 20 times the appropriate slope for the bulk metal. From a comparison of 
these results with the data available for the MacDonald geometry (with the field lying in the 
film plane), we deduce that the origin of the magnetoresistance increase for the Sondheimer 
geometry is related to size effects. We discuss several possible explanations for the absence 
of Sondheimer oscillations, such as a large Hall field, open orbits due to the preferred 
orientation of the @domains associated with charge-density waves and inherent bulk 
magnetoresistance. None of them seems to provide a sufficient argument for the absence of 
the oscillatory pattern in the field dependence of the transverse magnetoresistance in the 
potassium thin films under study. 

1. Introduction 

The influence of size effects upon the electrical resistivity of thin, metallic films has been 
widely studied both theoretically and experimentally. Outstanding reviews of this field 
are presented by Brandli and Olsen (1969) and Tellier and Tosser (1982). It was found 
originally (Sondheimer 1950, MacDonald and Sarginson 1950) that the application of 
magnetic fields to samples with a characteristic dimension similar to the electronic mean 
free path (MFP) leads to new phenomena that are now frequently named magnetomorphic 
effects. Two field orientations in which to study the transverse magnetoresistance of thin 
films, named after their inventors, are the MacDonald and Sondheimer geometries. In 
each case, the field is perpendicular to the current density J .  For the MacDonald 
geometry it also lies in the plane of the film and in the Sondheimer geometry the field is 
oriented along the outwards normal to the plane. The mutual orientation of the magnetic 
field B ,  the outwards normal to the plane of the film and the direction of the current 
density J is specified in figures l(a) and l (b)  for the MacDonald and Sondheimer 
geometries, respectively. In what follows, we mark the Sondheimer and MacDonald 
geometry by the angle 8 = [B A n], with 6' = 0" and 8 = 90" in the former and the 
latter case, respectively. The predictions of the magnetoresistance behaviour in the 
MacDonald geometry were checked in early work with sodium by MacDonald and 
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Figure 1. The mutual orientation of the magnetic field B ,  the current density J and the 
outwards normal to the surface of the film sample n in the (a)  MacDonald and (b )  Sondheimer 
geometries. 

Sarginson (1950), Chambers (1950) and White and Woods (1956). The oscillatory effects 
of the magnetomorphic origin predicted by Sondheimer for thin metallic films have been 
reported for sodium wires by Babiskin and Siebenmann (1957). We, however, found no 
reports of the size effects in thin potassium films with a thickness of tens of micrometres, 
which at 4.2 K is of the order of the MFP in pure bulk potassium. 

The physical origin of the characteristic behaviour of magnetoresistance in the two 
geometries is quite different. 

(i) MacDonald geometry; 8 = 90”. As shown schematically in figure 2(a), the ratio 
of the size-effect-dependent magnetoresistance to its free-electron bulk value at zero 
field shows an initial increase for low values of the variable p = d / r  = d e B / m v c ,  since 
some electrons suffer an initial decrease in MFP (MacDonald and Sarginson 1950; Azbel’ 
1963). Here d is the film thickness, r is the cyclotron radius and U is the electron velocity. 
There is a maximum at a field corresponding to /3 = 0.55 (Ditlefsen and Lothe 1966). In 
larger magnetic fields, the resistivity decreases with increasing field beyond the maximum 
because the effective electron free path of the spiral motion is increased by reducing the 
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collisions with the surface. For /3 > 2.0, the film thickness is greater than the diameter 
of the cyclotron orbit and the resistivity is expected from free-electron theory to be 
independent of magnetic field and to show saturation of size effects. This saturation might 
be affected slightly by the inherent bulk magnetoresistance which increases linearly in 
high fields (MacDonald and Sarginson 1950, Taub et a1 1971). 

(ii) Sondheimer geometry; 8 = 0". The predicted (Sondheimer 1950) behaviour of 
the magnetoresistance in this geometry is shown schematically in figure 2(b) .  With the 
magnetic field pointing along the z axis (see figure l(b)),  the mean electronic velocity in 
this direction (Harrison 1960) is: 

where A is the area of the orbit and m, is the cyclotron mass. 
To a first approximation under the condition d < MFP, the time for the electrons to 

travel the film thickness d is t d  = d /uz .  Comparing this with the period Tof the circular 
motion, one finds that an electron will complete n = t,/T orbits in crossing the film. 
Then, providing that the k-space orbits are closed, its net displacement in the film plane 
is zero. In this case, the net energy gain of the electron from the driving electric field is 
also zero. However, when td/T = n + 1, the energy gain A E  will be relatively large. Thus 
the A E  is expected to be an oscillating function of magnetic field B with the period 

The periodic variation in A €  provides a periodic change in the conductivity. The 
observed oscillations will come from the regions on the Fermi surface where the period 
is extrema1 or, as in the case of a spherical Fermi surface, where the plane kZ = constant 
just touches the Fermi surface and the orbit diameter shrinks to zero (Gurevich 1958). 
More generally, the observable periodic behaviour in the magnetoresistance will arise 
from the elliptic limiting points at which the plane k, = constant is just tangent to the 
Fermi surface. Thus, the Gaussian curvature of the Fermi surface at the elliptic limiting 
points can be derived from the period of the Sondheimer oscillations (Gurevich 1958, 
Munarin and Marcus 1966). For the case of a cylindrical Fermi surface with B parallel 
to the cylinder axis, one will not have such a limiting point. Gurevich showed that the 
absence of an oscillatory behaviour provides information about the direction of open 
orbits if they are in a metal. 

2. Experimental results 

We used freshly cut potassium metal for the preparation of all the samples, excluding 
sample 1. The experiments were carried out at 4.2 K. The resistivity data were taken by 
the four-probe method with a computer control. The magnetic field was provided by an 
electromagnet with a maximum field of 1.8 T. More details of the sample preparation 
and the, measuring procedure are given elsewhere (Gridin et a1 1988). The various sample 
parameters are found in table 1. From the extrapolation to the bulk metal of the observed 
residual resistance ratios ( R R R ~ )  uersus the reciprocal sample thickness, one finds the 
R R R ~  of the potassium metal and the MFP for each sample; the subscripts S and B stand 
for the size effect and bulk samples, respectively. We found RRRB = 2800 and the 
corresponding MFP of samples 1, 3 and 5 was 81 pm, whereas those of samples 2 and 4 
were 33 and 55 ,um, respectively. 
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Table 1.  Various parameters of the film samples studied in this work. Here K is a film 
thickness MFP ratio: R K R ~  is a residual resistance ratio for film samples; and ut is evaluated 
from equation (4) at B = 1.8 T. 

R,(295 K) d 
Sample No (mQ) R R K ~  (,um) IC W Z  

1 31.7 537 21.0 0.259 29.1 
2 347.0 96 1.9 0.034 32.6 
3 32.0 601 20.9 0.258 32.7 
4 363.7 150 1.8 0.055 32.1 
5 6.2 1562 10h.0 1.333 30.5 

The magnetic field orientation with respect to the outwards normal to the film surface 
was found from the angular dependence of the Hall effect. First, a rough estimate (to 
within 2-3") was made of the angle @(max) at which the maximum Hall voltage was 
obtained. Then, a 360" full angular dependence of the voltage was plotted versus cos 8,  
with the angle zero point at B(max). The angular dependence of the Hall voltage for 
sample 3 is presented in figure 3. The point where the two straight lines cross in this 
figure provides the best orientation for the study of the MacDonald geometry ( 8  = 90"). 
Rotating the field through 90" from this angle allows us to obtain the proper Sondheimer 
geometry, 8 = 0". The results for the transverse magnetoresistance of sample 4 

are plotted for both geometries in figure 4 as a function of w z ,  which is related to the 
field B (in T )  by (Gridin et a1 1988) 

= 6.19 x R R R ~ ( ~  + ~ / K ) B  (4) 

where R,(B) and Rs(0) are the resistance measured with and without the field, respect- 
ively; K is the film thickness/MFP ratio; the subscript S indicates the size effect case and 
R R R ~  is the residual resistance ratio of our samples, defined by 

R R R ~  = Rs(295 K)/Rs (4.2 K). ( 5 )  

The Rs(295 K) and Rs(4.2 K) are the room temperature and the 4.2 K resistances of our 
samples, respectively (see table 1 for K ,  R R R ~ ,  Rs(295 K) and the range of w z  covered 
for each sample in this work). 

Now we stress that reproducibility of results was achieved with the use of unoiled 
potassium metal for the sample preparation. All our samples, except 1, were rolled from 
freshly cut, unoiled potassium metal. Although the oil was thoroughly dried from 
sample 1, the small residual amount of oil on the film surface drastically affected the 
reproducibility of the results. This point is illustrated in figure 5,  where we compare the 
8 = 90" data taken for samples 1 and 3 (figure 5(a)) and 2 and 4 (figure 5(b)), with each 
pair having similar K-values. 

The main feature of the field-dependent transverse magnetoresistance in the 
Sondheimer geometry was a linear increase for w z  > 10. The Kohler slope of this linear 
dependence was found to be an increasing function of increasing K. Small deviations 
from linearity were observed at w z  < 10. 
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Figure 3. The angular dependence of the Hall voltage of sample 3. The best field orientation 
for the MacDonald geometry corresponds to the angle 09 = B‘n, which is determined by the 
point where the two straight lines cross. 

U T  

Figure 4. The transverse magnetoresistance of sample 4 in the MacDonald (+) and 
Sondheimer (0) geometries as a function of w z .  See equations (7)  and (8) for the K- 

dependence of the position of the maximum, wz(max), in the magnetoresistance studied in 
the MacDonald geometry and the K-dependence of the intersection point, wt(inter). 

According to theoretical predictions for this case (Sondheimer 1950), there should 
be a slight initial increase in magnetoresistance, followed by a first maximum at /3 = 
d / r  = 1 (or wz = P/K = l / ~ ) .  Then a quickly decaying oscillatory pattern should appear 
with the period of AP = 6. In terms of W E ,  we expect to see the first maximum at woz = 
29.4,18.2,3.9 and0.8 for samples 2 ,4 ,3  and5, respectively. In figure 6, we plot the field 
dependence of the transverse magnetoresistance of samples 3 and 5 (for sample 4, see 
figure 4; sample 2 gave essentially the same behaviour as that of sample 4). One sees 
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Figure 5 .  The transverse magnetoresistance in the MacDonald geometry of: (a )  samples 1 
(+) and 3 (3) and ( b )  2 (+) and 4 (0). The samples in each pair have similar K-values. 
Sample 1. however, which was prepared from oiled potassium does not show the charac- 
teristic feature of field-dependent resistivity in this geometry. 

that there is no evidence of the first maximum and of the multiple maxima. The evidence 
of size-related effects in this geometry was the saturation-like K-dependence of the 
Kohler slope, S ,  which is shown in figure 7. The values of the positive Kohler slopes 
found at 8 = 0" are given in table 2. We note that, for instance, the slope of the thickest 
sample, sample 5, is more than 20 times larger than the reported value of 0.004 for bulk 
potassium wires ( = 2  mm) from metal with the same purity with R R R ~  = 2500-3000 
(Taub et a1 1971). 

In order to show that the observations in the Sondheimer geometry have a size- 
effect-related origin, we make use of some of the data collected for the MacDonald 
geometry (Gridin et a1 1988). 

The positive Kohler slopes in the Sondheimer geometry are closely related to the 
negative slopes observed for the MacDonald field orientation. As is seen in figures 4 and 
5 ,  there is a field region immediately after the initial maximum where the mag- 
netoresistance shows a linear decrease, with quite a large negative Kohler slope. We 
found, similarly to in the case of the 8 = 0" geometry, that the magnitude of this slope 
is dependent on K. This dependence is presented in figure 7 and the absolute values are 
given in table 2. We found a close correspondence between the magnitude of the positive 
and negative slopes at 8 = 0" and 19 = 90°, respectively. One sees in figure 7 that for 
K < 0.26 the functional dependence on K of the Kohler slopes observed in the 8 = 90" 
geometry is the square root of that for the 8 = 0" one, with 

S ( K ;  8 = 90') - K' j ~ < 0 . 2 6  
s ( K ;  e = 00) - K* 

where we use an explicit labelling for the dependences on K and angle of the Kohler 
slopes, S(K; 8 ) .  The deviation from the behaviour when K > 0.26 can be understood 
qualitatively. In the proximity of bulk magnetoresistance effects the Kohler slope is as 
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Figure 6. The transverse magnetoresistances of 
sample 3 (0) and sample 5 (+) measured in the 
Sondheimer geometry. 

Figure 7. The K-dependence of the Kohler slopes, 
S, in the MacDonald (+) and Sondheimer (0) 
geometry plotted on natural logarithmic scales to 
illustrate the linear and quadratic power laws for 
the K-dependences of Kohler slopes measured 
in the MacDonald and Sondheimer geometries, 
respectively, for K < 0.26; see equation (6) in the 
text. 

low as S ( x )  = 0.004 (Taub et a1 1971) for all field directions in polycrystalline samples. 
According to the typical behaviour of the transverse magnetoresistance, as shown in 

figures l ( a )  and l (b) ,  there should exist an intersection point when the field dependences 
of the magnetoresistances measured in the Sondheimer and MacDonald geometries are 
brought together in the same plot. Our findings support this expectation for samples 2, 
4,3 and 5. We show this intersection point in figure 4 for sample 4. In fact, we found that 
the wz position of this point is inversely proportional to K. In figure 8 this observation 
is shown by a broken line, representing the empirical relation of the wz(inter) versus 
I/K via 

wt(inter) = 0.32,'~. (7) 
In figure 8 we also show the theoretical prediction (Ditlefsen and Lothe 1966) for the 

Table 2. Absolute value of the Kohler slopes, S = S(K), as measured for the Sondheimer 
(0 = 0") and MacDonald ( e  = 90") geometries. 

Positive Kohler Negative Kohler 
slope at 0 = 0" slope at 0 = 90" Sample No 

2 1 x 10-3 4 x 10-3 
3 56 x 10-3 29 x 10-3 

5 89 x 10-3 64 x 10-3 
4 4 x 10-3 6 X 
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1 / K  

Figure 8. The values of wt(max) (0) and ws(inter) (+) versus 1 / ~ .  See figure 4 for the 
definitions of wt(max) and wt(inter). The full line is the theoretical prediction for the K- 
dependence of wr(max) (see equation (8)); the broken line is the empirical fit. given by 
equation ( 7 ) .  to the ws(1nter) data. 

position of the initial maximum 

wz(max) = 0.55,’~ (8) 
as a full line together with the experimental values of wz(max) defined in figure 4. One 
sees that, apart from the prefactors in equations (7) and (8), the 1 / ~  dependence fits the 
observation for the U T  of the intersection point better than that for the position of the 
maximum. One sees that for the thicker samples 3 and 5 the wt(inter) essentially 
coincides with wz(max), but as K decreases the intersection occurs at higher w z  than 
that for which the magnetoresistance reaches its maximum. 

3. Discussion 

According to Sondheimer’s prediction, the potassium samples A ,  3 and 5 are capable of 
giving, respectively, at least one, two and seven oscillations in the transverse mag- 
netoresistance within the range of w z  covered. It should be noted, however, that for an 
uncompensated metal such as potassium, the amplitude of the oscillations decays like 
BP4, according to a theoretical study of this case (Gurevich 1958). Thus one does not 
expect to observe a multiple oscillatory pattern. In our study, we observed no evidence 
of even one maximum for this geometry. This is similar to the observation of MacDonald, 
who found a steady increase in magnetoresistance as a function of increasing field 
strength for sodium and rubidium (MacDonald 1957). Since all our measurements were 
carried out with the reversal of current and magnetic field direction, the data reported 
here do not include thermal and Hall voltage components. The difference between the 
potential drops at opposite fields, before the summing (a standard procedure to eliminate 
theHallcomponent), wasaslowas0.1%, 1.5% andlO%atB = 1.8Tforsamples2(4), 
3 and 5, respectively. In view of the observed degree of resistance increase, as shown in 
figures 4 and 6, this is a quite negligible effect even if one has not carried out the (+B)  
and ( - B )  measurements. We thus conclude that the sample shape argument (Cotti 
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1961), as an explanation of the absence of the Sondheimer oscillations, does not hold in 
our study. 

Another possible explanation of the absence of an oscillatory pattern arises from the 
case considered by Overhauser (1971). According to his theoretical predictions the 
charge-density wave Q-domains have their preferred orientation along the [ 1101 
direction. It was found (Monin and Boutry 1974) that potassium films grown on smooth 
amorphous substrates have the [110] axis perpendicular to the surface. For the purposes 
of discussion, we assume that this might hold for the rolled films as well and provide 
open orbits in this direction. Then, there should not be (Gurevich 1958) an oscillatory 
behaviourwhen the field is parallel to thefilm'snormal, i.e. in the Sondheimergeometry. 

Our argument against this scenario is twofold. First, the cooling-warming cycling 
should cause a reoriention of Q-domains. This is frequently used by Overhauser (1978) 
for an explanation of the considerable lack of reproducibility in experimental studies 
with potassium. We found that the results were stable against thermal cycling within 1% 
provided that freshly cut, unoiled metal was used for the sample preparation. Secondly, 
the alignment of the Q vector with the film's normal should produce a non-linearity in 
the angular dependence of the Hall coefficient (Huberman 1987), when the latter is 
plotted as a function of cos 8. As shown in figure 3, this was not observed in our study. 
We note that for the absence of the observable oscillatory pattern it is sufficient that the 
z component of the velocity of conducting electrons, uz,  is very small, i.e. U, e uF. This 
condition (less restrictive than for the existence of open orbits) yields a very small period 
of oscillations in terms of A B  (see equation (2)) which together with their rapidly 
decaying amplitude is just enough to prevent their experimental observation. 

Let us consider the possibility that an inherent bulk magnetoresistance of potassium 
is responsible for the absence of the weak (decaying like E4) oscillatory pattern. 
According to the theory developed for vanishing bulk magnetoresistance (Sondheimer 
1950) in a 'free-electron' metal like potassium, the amplitude of the first oscillation can 
be as large as 20% of the zero-field resistivity when K = 0.5 and it increases with 
decreasing K .  Thus, for instance, for sample 3 with K = 0.26 we should observe at least 
the first maximum in ARs(B)/Rs(0).  

With the mean accuracy of our data up to 0.25% and bulk values of Kohler slopes 
available from the study of Taub et a1 (1971). ,S = 0.004, we therefore rule out the 
masking of an oscillatory pattern by the bulk magnetoresistance. On the other hand, it 
appears that the positive Kohler slopes in the 8 = 0" geometry are closely related to the 
negative ones observed at 8 = 90" (see figure 7 and the discussion above). In order to 
establish the first maximum, one needs to cover the LL)Z region of A m  = (3-6) /~  (or 
A b  = 3-6; see paragraph I, case 8 = o", above). 

For sample 3, for instance, with a Kohler slope S = 0.056 we get a linear increase of 
resistance for this A.oz region that is as large as 70-130%. This increase is enough to 
prevent the clear observation of the oscillatory pattern. We, therefore, come to the 
conclusion that the size-dependent enhancement in the Kohler slopes serves by itself as 
the cause of the absence in the observable oscillations in magnetoresistance at 8 = 0", 
i.e. for the Sondheimer geometry. 

In other words, we found that the size-dependent enhancement of the Kohler slope 
at high fields is a primary effect of the confined electronic motion in samples with 
d < MFP, whereas the oscillatory pattern is probably only the secondary one, which can 
be masked by the large linear increase in the magnetoresistance at 8 = 0". 

Let us discuss now the K-dependent increase in the magnetoresistance for the 
Sondheimer geometry. It was shown by Sondheimer that thin films of metals, which do 
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not exhibit bulk magnetoresistance, will show size-effect-dependent magnetoresistance 
because of the constraint on the motion of carriers due to the reduced thickness. 
Sondheimer has found that in the limit of very small magnetic fields and small rc-values 
the magnetoresistance AR(B)/R(O) goes to zero. Jain and Verma (1973) have extended 
this analysis to the case of small fields and arbitrary K-values. They found (Jain and 
Verma (1973), equation (20)) that 

AR(B)/R(O) - B 2 Q ( ~ ) .  (9) 

The K-dependence of the magnetoresistance is described by the function Q ( K ) ,  which 
increases with K varying from 0.01 to 1 and after reaching a maximum at K = 1 (assuming 
diffusive scattering, p = 0) decreases to zero, for K+ m. We found that the deviation 
from a linear increase in magnetoresistance occurs for u t  < 10 and does not agree with 
the quadratic field dependence, given by equation (9), for ut > 10. We now check the 
theoretical prediction for the K-dependence of the AR(B)/R(O), which is implicitly given 
by Q(K)  in equation (9). Using the observed linearity in AR,(B)/R,(O) for w t  > 10, we 
write 

ARs(B)/Rs(O) - S ( K ) ,  ut > 10 (10) 

where S(K) is the K-dependent (or sample-dependent) Kohler slope of the field depen- 
dence (through w t )  of the transverse magnetoresistance in the Sondheimer geometry. 
Since the transition from a non-linear (low-ut) towards a linear (high-ut) field depen- 
dence in the magnetoresistance occurs in a smooth (see figures 4 and 6) manner, we can 
write 

Q ( K )  - S(K). (11) 

Assuming a totally diffusive scattering, i .e.  p = 0, the K-dependence of Q ( K )  is given 
(Jain and Verma 1973) by 

Q ( K )  = @(K) (1 - @ ( K ) / F ( K ) )  

@(K) = 2F(K) - 1 + R ( K )  

R ( K )  = 2 ! K / =  exp(-r) (:I2 [l - (:I2] dr .  

To return to the original forms for F ( K )  and R ( K ) ,  which are given by Jain and Verma. 
one just substitutes for the variable r in equation (12) with K/COS 8. (We note that there 
is an obvious misprint in equation (14) of the Jain and Verma paper: the right-hand side 
(RHS) should be 1 - RHS). In figure 9 we present, on natural logarithmic scales, the 
calculated Q ( K )  of equation (12) together with our S ( K )  data (see table 2 for the values 
of Kohler slopes for different samples in the Sondheimer geometry) and the available 
value of S = 0.004 for bulk (2 mm thick) potassium wire (this corresponds to K = 25, 
assuming MFP = 80 pm), provided by Taub et al (1971). One sees that there is a good 
qualitative agreement with the theoretical predictions of Jain and Verma for the exist- 
ence of a maximum at K = 1 in the K-dependence of the magnetoresistance in the 
Sondheimer geometry. 
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In  K 

Figure 9. A plot of the K-dependent Kohler 
slopes, S ( K ) ,  in the Sondheimer geometry from 
(0) this work, and (+) that of Taub eta1 (1971). 
The full curve is the plot of Q ( K ) ,  which is given 
by equation (12). We note a good qualitative 
agreementfortheexistenceofamaximuminQ(~) 
at K = 1 (Jain and Verma 1973). 

4. Conclusions 

We found that a high reproducibility of results can be achieved when thin potassium 
films are prepared from freshly cut, unoiled potassium metal. The measurements in  the 
Sondheimer geometry gave no observable oscillatory pattern in the field dependence of 
the transverse magnetoresistance. On the other hand, for the high-field regime, with 
ut = 1C-30, there is a steady non-saturating linear increase in the magnetoresistance. 
We found a good qualitative agreement between the K-dependence of the Kohler slope 
of this increase and the available theoretical analysis of the magnetoresistance in the 
Sondheimer geometry. This size-dependent enhancement of the Kohler slopes at high 
fields is found to be sufficient to provide an effective ‘masking’ of the oscillatory part of 
the field-dependent magnetoresistance in the Sondheimer geometry. However, the 
absence of the oscillatory pattern can be explained alternatively by an unjustified assump- 
tion of a very small component of an electronic velocity in the direction of the normal to 
the film plane. The field-dependent reduction of the normal component of the electronic 
velocity is readily understood in the MacDonald geometry, since with the field parallel 
to the film surface, the probability that an electron strikes the external surfaces decreases 
with the increasing field strength. 

In the Sondheimer geometry, however, this component is directed along the magnetic 
field. One therefore needs a field-independent mechanism for the reduction of the 
electronic velocity in the normal direction. 

We conclude that in view of the present study and the more detailed analysis of the 
MacDonald geometry (Gridin et a1 1988) for which we found only qualitative agreement 
with the existing models of size effects in a ‘free-electron’ metal, a revision of the theory 
is desirable. It should be noted that investigation of size effects in potassium is also of 
fundamental importance for the checking of the conceptual grounds underlying the 
more complicated modern theories of condensed matter. 
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